113 research outputs found

    Strong polarization mode coupling in microresonators

    Full text link
    We observe strong modal coupling between the TE00 and TM00 modes in Si3N4 ring resonators revealed by avoided crossings of the corresponding resonances. Such couplings result in significant shifts of the resonance frequencies over a wide range around the crossing points. This leads to an effective dispersion that is one order of magnitude larger than the intrinsic dispersion and creates broad windows of anomalous dispersion. We also observe the changes to frequency comb spectra generated in Si3N4 microresonators due polarization mode and higher-order mode crossings and suggest approaches to avoid these effects. Alternatively, such polarization mode-crossings can be used as a novel tool for dispersion engineering in microresonators.Comment: Comments are very welcome (send to corresponding author

    Matchgate quantum computing and non-local process analysis

    Full text link
    In the circuit model, quantum computers rely on the availability of a universal quantum gate set. A particularly intriguing example is a set of two-qubit only gates: matchgates, along with SWAP (the exchange of two qubits). In this paper, we show a simple decomposition of arbitrary matchgates into better known elementary gates, and implement a matchgate in a linear-optics experiment using single photons. The gate performance was fully characterized via quantum process tomography. Moreover, we represent the resulting reconstructed quantum process in a novel way, as a fidelity map in the space of all possible nonlocal two-qubit unitaries. We propose the non-local distance - which is independent of local imperfections like uncorrelated noise or uncompensated local rotations - as a new diagnostic process measure for the non-local properties of the implemented gate.Comment: * published version * extended title reflecting the additions on non-local process analyis in the manuscrip

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Polarization-entanglement conserving frequency conversion of photons

    Get PDF
    Entangled photons play a pivotal role in the distribution of quantum information in quantum networks. However, the frequency bands for optimal transmission and storage of photons are not necessarily the same. Here we experimentally demonstrate the coherent frequency conversion of photons entangled in their polarization, a widely used degree of freedom in photonic quantum information processing. We verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully confirm that our characterised fidelity of entanglement transfer is close to unity using both state and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum networks.Comment: 4 pages, 4 figure

    Direct generation of photon triplets using cascaded photon-pair sources

    Full text link
    Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. We expect our photon-triplet source to open up new avenues of quantum optics and become an important tool in quantum technologies. Our source will allow experimental interrogation of novel quantum correlations, the post-selection free generation of tripartite entanglement without post- selection and the generation of heralded entangled-photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, ideally suited for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur

    Microscopy with undetected photons in the mid-infrared

    Get PDF
    Owing to its capacity for unique (bio)-chemical specificity, microscopy with mid-infrared (IR) illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection, with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy while only requiring near-IR detection with a silicon-based camera. In this proof-of-principle implementation, we demonstrate widefield imaging over a broad wavelength range covering 3.4 to 4.3 μm and demonstrate a spatial resolution of 35 μm for images containing 650 resolved elements. Moreover, we demonstrate that our technique is suitable for acquiring microscopic images of biological tissue samples in the mid-IR. These results form a fresh perspective for potential relevance of quantum imaging techniques in the life sciences

    Picosecond-resolution single-photon time lens for temporal mode quantum processing

    Get PDF
    Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for numerous applications in quantum information science. In this work, we report an all-optical time lens for quantum signals based on Bragg-scattering four-wave mixing with picosecond resolution. Our system achieves a temporal magnification factor of 158 with single-photon level inputs, which is sufficient to overcome the intrinsic timing jitter of superconducting nanowire single-photon detectors. We demonstrate discrimination of two terahertz-bandwidth, single-photon-level pulses with 2.1 ps resolution (electronic jitter corrected resolution of 1.25 ps).We draw on elegant tools from Fourier optics to further show that the time-lens framework can be extended to perform complex unitary spectro-temporal transformations by imparting optimized temporal and spectral phase profiles to the input waveforms. Using numerical optimization techniques, we show that a four-stage transformation can realize an efficient temporal mode sorter that demultiplexes 10 Hermite–Gaussian (HG) modes. Our time-lens-based framework represents a new toolkit for arbitrary spectro-temporal processing of single photons, with applications in temporal mode quantum processing, high-dimensional quantum key distribution, temporal mode matching for quantum networks, and quantum-enhanced sensing with time-frequency entangled states.Chaitali Joshi, Ben M. Sparkes, Alessandro Farsi, Thomas Gerrits, Varun Verma, Sven Ramelow, Sae Woo Nam, and Alexander L. Gaet

    Violation of local realism with freedom of choice

    Get PDF
    Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, "loopholes" arise which allow observed violations to still be explained by local realistic theories. Violating Bell's inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bell's inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within non-determinism, i.e. in the context of stochastic local realism.Comment: 12 pages, 3 figures, 2 tables, published online before print: http://www.pnas.org/content/early/2010/10/29/1002780107.abstrac

    Optical source of individual pairs of colour-conjugated photons

    Get PDF
    We theoretically demonstrate that Kerr nonlinearity in optical circuits can lead to both resonant four-wave mixing and photon blockade, which can be used for high-yield generation of high-fidelity individual photon pairs with conjugated frequencies. We propose an optical circuit, which, in the optimal pulsed-drive regime, would produce photon pairs at the rate up to 5 × 105  s−1 (0.5 pairs per pulse) with g(2)(0)<10–2g(2)(0)<10−2 for one of the conjugated frequencies. We show that such a scheme can be utilised to generate colour-entangled photons
    • …
    corecore